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Botulinum neurotoxins (BoNTs), the most potent toxins
known to mankind (the lethal dose for humans is 1 µg/kg
by the oral, 10–13 ng/kg by the inhalational, and 1–2 ng/kg by
the intravenous or intramuscular routes), are metallopro-
teases that act on nerve–muscle junctions to block exocytosis
through a very specific and exclusive endopeptidase activity
against soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor (SNARE) proteins of presynaptic vesi-
cle fusionmachinery. Botulinumneurotoxins are produced by
ubiquitous anaerobic bacteria, Clostridium botulinum. Clos-
tridia are gram-positive, spore-forming bacteria widely pres-
ent in soil, water, and the gastrointestinal (GI) tract of most
animals and humans. Out of various species of Clostridia, C.
botulinum produces a neurotoxin that causes the neuropar-
alytic disease botulism, a paralytic illness of motor neuron
and autonomic nerves.1 Toxin exposure generally occurs after

ingestion of contaminated food with C. botulinum spores and
colonization of the GI tract (infant botulism), or with pre-
formed toxin (food poisoning). Of the seven known serotypes
(A-G) of BoNT, epidemiologically only A, B, E, and F are known
to cause human botulism. Food-borne botulism is the most
common form of botulism in the United States (15% food
borne, 65% infant, and 20% wound),2 and BoNT-A is the most
toxic among different serotypes.3 Botulinum neurotoxin can
be absorbed at one ormore sites in themouth to gut route, but
most common is intestinal colonization of the bacteria.
Botulinum neurotoxin can be detected in the serum 2 days
to 2 weeks after the onset of symptoms.4

In 1928, Sommer and Snipe at the University of California
isolated BoNT as a stable acid precipitate for the first time.5

Subsequently, standardized preparations of BoNT and main-
tenance of rigorous safety standards for its therapeutic use
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Abstract Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is the most potent
molecule known to mankind. Higher potency of BoNT is attributed to several factors,
including structural and functional uniqueness, target specificity, and longevity.
Although BoNT is an extremely toxic molecule, it is now increasingly used for the
treatment of disorders related to muscle hyperactivity and glandular hyperactivity.
Weakening of muscles due to peripheral action of BoNT produces a therapeutic effect.
Depending on the target tissue, BoNT can block the cholinergic neuromuscular or
cholinergic autonomic innervation of exocrine glands and smooth muscles. In recent
observations of the analgesic properties of BoNT, the toxin modifies the sensory
feedback loop to the central nervous system. Differential effects of BoNT in excitatory
and inhibitory neurons provide a unique therapeutic tool. In this review the authors
briefly summarize the structure and mechanism of actions of BoNT on motor and
sensory neurons to explain its therapeutic effects and future potential.
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were achieved by Edward J. Schantz, Carl Lamanna, and
colleagues from the Department of Microbiology and Toxi-
cology at the University of Wisconsin-Madison.6–8 The first
documented use of BoNT for the treatment of disease was in
the 1970s, approximately 150 years after Kerner’s initial
observations about the potential use of BoNT as a therapeutic,
when Dr. Alan Scott, an ophthalmologist, locally injected
minute doses of BoNT to selectively deactivate muscle spas-
ticity in the strabismus in monkeys.9 Following the success of
a series of clinical studies on humans suffering from strabis-
mus,10 the U.S. Food and Drug Administration (FDA) in 1989
approved the use of botulinumtoxinA (BoNT-A), BOTOX,
manufactured by Allergan, Inc., for the treatment of strabis-
mus, blepharospasm, and hemifacial spasm. Since then, the
very lethal botulinum toxins, types A and B, have been
extensively used for the treatment of a myriad of dystonic
and nondystonic movement disorders and a host of other
medical conditions, including axillary hyperhidrosis, spastic-
ity, tremors, painmanagement, etc. Thehigh efficacyof BoNT-
A, coupled with a good safety profile, has prompted its
empirical use in a variety of ophthalmological, urological,
gastrointestinal, secretory, and dermatological disorders.11

The list of conditions treatedwith botulinum toxin is expand-
ing at a brisk rate.

The potential use of BoNT-A in aesthetics was first dem-
onstrated in 1987 based on the observation that facial wrin-
kles were diminished upon treatment with BoNT-A for
blepharospasm.12 Dynamic facial lines and wrinkles are
caused by patterns of repetitive muscle contractions or facial
expressions. Botulinum toxin injections have revolutionized
the cosmetic approach to rejuvenation of an aging face, and
are nowwidely used for several aesthetic procedures, includ-
ing the treatment of glabella frown lines, forehead furrows,
and periorbital wrinkles.13

Depending on the target tissue, BoNTs can block the
cholinergic neuromuscular or cholinergic autonomic inner-
vations of exocrine glands and smooth muscles. The very

ability of the toxin to produce flaccid muscle paralysis
through chemical denervation has been put to good use,
and these potentially lethal toxins have been licensed to treat
an ever-expanding list of medical disorders, and more popu-
larly in the field of aesthetic medicine. Nerve terminal intoxi-
cation by BoNTs is completely reversible, and the duration of
therapeutic effect of BoNTs varies for different serotypes.
Thus, it is both themost potent toxinmolecule, and a “wonder
drug” against numerous neuromuscular and sensory
disorders.

Molecular Structure of Botulinum
Neurotoxins

Botulinum neurotoxin is produced as a single polypeptide
chain with a molecular mass of approximately 150 kDa that
displays low intrinsic activity. This precursor protein is
subsequently cleaved by bacterial proteases at an exposed
protein-sensitive loop generating a fully active neurotoxin
composed of a 100 kDa heavy chain (HC) and a 50 kDa light
chain (LC) (►Fig. 1A). The HC and LC remain linked by
noncovalent protein–protein interactions, a conserved inter-
chain disulfidebridge, and a belt that extends from theHC and
wraps around the LC.14 During the intoxication process, the
interchain bridge is reduced, a necessary prerequisite for the
intracellular action of the toxins.15 The three-dimensional
(3D) structures of BoNTs reveal that they are folded into three
distinct domains that are functionally related to their cell
intoxication mechanism. The N-terminal domain is the
50 kDa LC, which is a Zn2þ dependent endoprotease. The
100 kDaHC contains an N-terminal translocation domain and
a C-terminal receptor-binding domain.14

Botulinum neurotoxins are secreted from the Clostridi-
um botulinum bacteria in the form of multimeric com-
plexes, with a set of nontoxic proteins coded for by genes
adjacent to the neurotoxin gene.16,17 These protein com-
plexes range in size from 300 kDa to 900 kDa and exist in

Fig. 1 (A) Structure of botulinum neurotoxin (BoNT; PDB ID: 3BTA). Binding domain heavy chain N-terminus (HCN) and heavy chain C-terminus
(HCC), translocation domain (HN), and catalytic or endopeptidase domain (LC) are shown. Alpha-helix and β sheets are depicted in blue and yellow,
respectively. All the BoNT serotypes, except BoNT-E, share similar structural organization of their four domains. (B) Structure of nontoxic
nonhemagglutinin A (NTNHA; PDB ID: 3VUO). In the crystal structure, domain organization of NTNHA is similar to BoNT-A.
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three progenitor toxin forms: M (medium), L (large), and LL
(extra large) forms. The M form consists of neurotoxin (150
kDa) and a nontoxic protein component (120 kDa), which is
called neurotoxin-binding protein (NBP)18 or nontoxic
nonhemagglutinin component (NTNH)19 with 12S molec-
ular size (the molecular size of complex forms is expressed
as sedimentation equilibrium values). The L form has a
molecular weight of approximately 500 kDa and a molecu-
lar size of 16S. The LL form is approximately 900 kDa and
19S. The L and LL complexes consist of the 150 kDa
neurotoxin moiety and a set of complexing proteins
made of a NTNH/NBP and several hemagglutinin proteins
(HA). These are referred to as neurotoxin-associated pro-
teins (NAPs), and also as complexing or accessory proteins.
Stabilized through noncovalent interactions, NAPs account
for up to 70% of the total mass of the BoNT complex.20,21

Currently,major BoNT therapeutic products include BoNT-
A complex (marketed as BOTOX and Dysport, Galderma
Laboratories, L.P.), BoNT-B complex (marketed as MYOBLOC,
Solstice Neurosciences, LLC, in the U.S., and NeuroBloc, Eisai
Manufacturing Inc., in Europe), and isolated BoNT-A without
NAPs (marketed as XEOMIN, Merz North America, Inc.).
Although NAPs do not have any therapeutic role, these may
play a role in the stability of the BoNT formulation and in
diffusion of the injected BoNT for therapeutic purposes.22,23

In general, BoNT in the complex form is resistant to environ-
mental stress, such as pH, temperature, and proteases. How-
ever, commercial products contain additional formulations
that may affect the stability of the product. In BoNT-A
complex preparations, adding either sodium chloride
(BOTOX) or lactose (Dysport) protects the steric conformation
of BoNT.24 Human serum albumin is also added to prevent
loss from surface adsorption. The toxin is then dried either
with freezing (Dysport) or without freezing (BOTOX).24 These,
as well as the pure BoNT-A product, XEOMIN, are lyophilized
products that are reconstituted with saline solution main-
tained near physiological pH.

The botulinum toxin type B product (MYOBLOC, Neuro-
Bloc) is provided in liquid form at pH 5.6, as opposed to a
lyophilized powder that requires reconstitution in saline. It
nevertheless is also based on the complex of BoNT-B
neurotoxin and NAPs. Botulinum neurotoxin B has shown
stability for months when stored appropriately at 2°C to 8°
C. However, BoNT-A must be stored at �5°C as a powder
and must be used within hours once reconstituted accord-
ing to the manufacturer’s recommendation.25 The BoNT-B
complex appears as a 700 kDa single peak on size-exclusion
chromatography (SEC) at pH 5.5, but when exposed to pH
7.8 overnight a small portion of the neurotoxin appears to
dissociate from the complex.26 A similar observation has
been made for BoNT-A complex dissolved in 50 mM Tris-
HCl, pH 7.6, showing a 569 kDa single peak on a Sephadex
G-200 SEC analysis.27

A major issue in the literature relates to potential varia-
tion in the diffusional behavior of the drug formulation
with the size or nature of the BoNT complex. Using radio-
labeled BoNT-A complex (900 kDa) and purified BoNT-A
(150 kDa), it has been clearly established that there is no

significant difference in the diffusion of these reagents at
physiological doses.28,29 In fact, the diffusion was not
significant for either of the samples.

It has been pointed out that the composition and per-
haps stability of BoNT-A complex depends on the culture
and purification conditions.30 Long-term stabilizing effects
of NAPs have been questioned from the stability data of
pure 150 kDa BoNT-A preparations used in XEOMIN for-
mulations31 under temperature conditions of up to 60°C in
the presence of human serum albumin and sucrose
excipients.

The presence of NAPs in therapeutic products based on
BoNT-A complex (BOTOX and Dysport) and BoNT-B complex
(MYOBLOC, NeuroBloc) may or may not be needed for stabili-
ty and biological activity, but are currently present as part of
the formulation. The question is whether their presence has
any unintended consequences, both positive and negative.
This is important to note because BoNT complexes are
currently in use as therapeutic drugs, and even if BoNT and
NAPs separate either before injection or after injection,
nerves and surrounding tissues are exposed to both compo-
nents. Recent reports on the exposure of neuronal and other
cells suggest that there is a massive genomic and cytokine
response to the complex, and some of these responses appear
to be exclusive to the BoNT and NAPs.32,33 Because the
complex has remained a safe drug for a couple of decades
now, it is possible that the cellular responses to NAPs and
BoNT may provide a balance in the cellular physiology.
Interestingly, the 3D crystal structure of NTNHA and BoNT-
A have similar polypeptide foldings (Protein Data Bank [PDB]
ID: 3V0A; PDB ID: 3VUO),34,35 one is catalytically inactive (…..
KCLIK…..) and other one is active (…..HELIH…..), respectively
(►Fig. 1B).

The nontoxic NAPs are believed to protect the neurotox-
in from degradation during its passage through the low pH
environment of the GI tract.34 They are also known to assist
BoNT translocation across the intestinal mucosal layer.36,37

The association of NAPs with the toxin is pH dependent; at
physiological pH this complex is reported to rapidly disso-
ciate, allowing release of the neurotoxin into the blood
stream.31,38 Assembly and stability of the complex not only
depends on pH; it also requires optimal ionic strength.
Notably, not only the presence of all the NAPs is needed, but
also the proper organization of NAPs and the toxin mole-
cule is needed for the most stable and active molecule. Oral
toxicity of BoNT is correlated with the size of the toxin
complex between the BoNT and NAPs; the LL complex of
BoNT-A is more toxic than the L complex, the L complex is
more toxic than the M complex, which is more toxic than
isolated 150 kDa toxin.

The molecular structure of the complete BoNT-A complex
has been recently obtained from X-ray crystal and cryoelec-
tronmicroscopy, showing a bimodular structure consisting of
the BoNT-A and NBP (NTNH) as one module, and the HA-70,
HA-17, and HA-33 together as another (►Fig. 2).39 The
complete bimodular complex seems to be important for
facilitating its intestinal absorption during the toxicoinfection
process of the food-poisoning botulism disease.
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Mechanism of Action of Botulinum
Neurotoxins

When therapeutic BoNT preparation is injected into the
target tissue, it acts as a metalloproteinase that enters pe-
ripheral cholinergic nerve terminals and cleaves proteins that
are crucial components of the neuroexocytosis apparatus,
causing a persistent but reversible inhibition of neurotrans-
mitter release. The exact molecular mechanism of BoNT
action still not completely understood, but based on existing
experimental evidence, BoNT intoxication is believed to occur
through a multistep process involving each of the functional
domains of the toxin.40,41 These steps include binding of the
neurotoxin to specific receptors at the presynaptic nerve
terminal, internalization of the toxin into the nerve cell and
translocation across the endosomal membrane, and intracel-
lular endopeptidase activity against proteins crucial for neu-
rotransmitter release.

Botulinum neurotoxins have high affinity and specificity
for their target cells and use two different coreceptors for
binding at the neuronal cell surface. The binding of BoNTs to
the neuromuscular junction involves a tight association
between its receptor binding heavy chain domain and com-
plex polysialogangliosides particularly G1b series, namely
GT1b, GD1b, GQ1b, that are known to be enriched in neu-
rons.42,43 BoNT-A, -B, -E, -F, and -G have a conserved binding
pocket for gangliosides, whereas BoNT-C and BoNT-D display
two binding sites for gangliosides.

Following binding to the gangliosides, the membrane-
bound ganglioside-toxin complex moves to reach the toxin-
specific protein receptor. Different BoNT serotypes bind to
different protein receptors. Synaptic vesicle glycoprotein 2
(SV2; isoforms A–C), a synaptic vesicle glycoprotein, has been
identified as a receptor for BoNT-A, -D, -E, -F, and -G.44–46

Synaptotagmin, a synaptic vesicle protein, has been identified

as the receptor for botulinum neurotoxin (BoNT) types B and
G.47,48 Botulinum neurotoxin G binds to the intraluminal
domain of synaptotagmin, whereas BoNT-A, -D, -E, and -F
bind to loop 4 of SV2. Botulinum neurotoxin C is the only
serotype that does not have a protein receptor identified in
neuronal cells. As mentioned above, apart from binding to
two gangliosides, BoNT-C has been reported to bind to
phosphoinositide-containing liposomes.49

Following binding to neuronal cell surface receptors, BoNT
is internalized into cellular compartments by receptor-medi-
ated endocytosis.14,50 After the incorporation of BoNTs with-
in the early endosomes, the acidic environment of the
endocytotic vesicles is believed to induce a conformational
change in the neurotoxin structure. The heavy chain is
inserted into the synaptic vesicle membrane, forming a
transmembrane protein conducting channel that translocates
the LC into the cytosol.51

After internalization into the neuronal cytosol, BoNTs
exert their toxic effect by virtue of the metalloprotease
activity of the LC, which specifically cleaves one of three
SNARE proteins that are integral to vesicular trafficking and
neurotransmitter release.14 The specific SNARE protein tar-
gets and the site of hydrolytic cleavage varies among the
seven BoNT serotypes.14 The BoNT serotypes A and E specifi-
cally cleave SNAP-25 at a unique peptide bond. The BoNT
serotypes B, D, F, and G hydrolyze VAMP/synaptobrevin at
different single peptide bonds, and BoNT-C cleaves both
syntaxin and SNAP-25 (►Fig. 3).14,52

As mentioned above, the dual receptor model is proposed
for receptor-mediated endocytosis. Synaptic vesicle glycopro-
tein 2C (SV2C) and gangliosides (GT1b/GD1b) are identified
as receptors for BoNTs. The SV2C is also expressed in intesti-
nal cells, such as CaCo-2 or m-ICel2 cells. Therefore, it is
possible that receptors for BoNT in neuronal and intestinal
cells are the same. However, BoNT-A Hc binding to intestinal
cells ismuch lower comparedwith neuronal cells. Thismaybe
due to the low affinity of BoNT-A to intestinal receptors, or
fewer numbers of receptors for BoNT-A in intestinal cells. The
accurate localization in terms of any specialized microtopo-
graphical distribution of BoNT receptors in neuronal and
intestinal cell membranes is not yet established. However,
BoNT-A receptors do not seem to be localized directly on
cholesterol-enriched microdomains, whereas SNAREs con-
centrate in submicrometer sizes.53–55

The inhibitory potential of BoNT in involuntary muscle
activity makes it a useful therapeutic molecule. Intoxication
of the nerve terminal by BoNTs is fully reversible and does not
lead to neurodegeneration.56 During BoNT intoxication,
unlike denervation, contact between nerve terminal and
musclefiber is maintainedwithout the loss of motor neurons.
The BoNT intoxication process is temporary even though it
lasts for a fewweeks tomonths. Histological studies indicated
that the recovery process occurs in two stages.57 Initially,
nerve sprouting occurs and newsynapses develop, alongwith
an increased vesicle recycling rate. In the second stage, sprout
branches of nerve recess and functionality returns to normal.
The recovery time varies according to the serotypes and
location of intoxication.58

Fig. 2 Molecular structure of botulinum neurotoxin A (BoNT-A)
complex reconstructed by fitting the three-dimensional structures of
the BoNT-A M complex (BoNT-A and neurotoxin-binding protein) and
HA70-HA-17-HA33 complex modules into the electron microscopy
image. (From Lee et al, 2013.39)

Seminars in Neurology Vol. 36 No. 1/2016

Botulinum Toxin as a Therapeutic Agent Kumar et al. 13

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f M

as
sa

ch
us

et
ts

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



Depending on the target tissue, BoNT can block the choliner-
gic autonomic innervation of the tear, salivary, and sweat glands,
or cholinergic neuromuscular innervation of striated and
smooth muscles.59 After intramuscular injection, the dose-
dependent paralytic effect of BoNT can be detected within 2
to 3 days. It reaches its maximal effect in less than 2 weeks and
gradually begins to decline in a few months due to the ongoing
turnover of synapses at the neuromuscular junction.58 The
duration of the effect lasts somewhere between 3 to 6 months;
the benefits have been observed with subsequent treatments in
terms of increased dosing intervals.60 There has been no
evidence of any long-term or permanent degeneration or atro-
phyofmuscles inpatientswith repeated injectionsof BoNTsover
an extended period.58

Effect of Botulinum Neurotoxin on Active
Neurons

Although BoNTs are well known to act on cholinergic nerve
presynapses of the motor neurons, resulting in the classic
flaccid muscle paralysis of botulism or limited muscle paral-
ysis observed in case of strabismus, blepharospasm, dysto-
nias, etc., it has also been clearly observed that BoNTs bind to
and are taken up by sensory neurons of the peripheral
nervous system, leading to the blockage of several neuro-
communicative molecules such as Substance P and gluta-
mate.61 Although the basic mechanism of binding with
receptors, endocytosis, and intracellular cleavage of SNARE
proteins appears to remain the same in both motor and
sensory neurons, the pharmacological mechanisms and their
consequences vary. Previous studies have mostly focused on
the motor neuronal phenomenon; experimental data have
now started accumulating on the sensory neuronal events,
even as these expand the therapeutic application of BoNTs.

Peripheral versus Central Nervous System Effects of
BoNT
The peripheral action of BoNT is a well-established fact, but
activity in the central nervous system (CNS) is yet to be clearly
established and understood. Also, very little is known about
intracellular trafficking of BoNTwithin the neurons. However,
because of its large size (150 kDa) it is difficult for this
molecule to pass through the blood–brain barrier, but there
are two possibilities for it to reach the CNS when adminis-
tered in muscles: systemic spread or axonal retrograde/
anterograde transport. Lawrence et al62 suggested that the
spread of BoNT-A and BoNT-E within cell bodies and distal
neuronal processes may occur by passive diffusion. However,
experimental data have not supported the passive diffusion
hypothesis63; thus axonal transport is the most likely mech-
anism for distribution and transport of toxin in various
regions of axons, and possibly to the CNS as well.64–67 Various
studies have indicated the presence of botulinum toxin in
neuronal pathways directed to the CNS, but have not suc-
ceeded to establish the transport of active toxin in the
CNS.68,69 However, Restani et al63 showed a significant
amount of SNAP-25 cleavage by BoNT-A in the tectum after
delivery into the eyes of a rat model, indicating the strong
possibility of anterograde transport and transcytosis of BoNT
in axons. Antonucci et al66 have demonstrated cleavage of
SNAP-25 on the facial motor nucleus after peripheral admin-
istration, suggesting the possibility of retrograde transport
and transcytosis to central neurons and motor neurons.
Matak et al70 successfully demonstrated cleavage of SNAP-
25 at distal sites from a low peripheral dose. Truncated SNAP-
25 was observed in ipsilateral spinal cord horns after periph-
eral BoNT-A administration. Colchicine, an axonal transport
blocker, prevented SNAP-25 cleavage,70 indicating trafficking
of BoNT-A is through axonal transport. Marino et al71 have

Fig. 3 Mode of action of botulinum neurotoxin (BoNT). (Left) Pre- and postsynaptic events in normal synapse. (Right) Synaptic events in BoNT-
intoxicated synapse. Steps are binding, internalization, translocation, and endopeptidase activity. (From Singh et al, 2014.)
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shown the effect of BoNT-B in reducing plasma extravasation
in the hindpaw, dorsal horn SP release, and c-Fos activation in
the dorsal root, alongwith cleavage of VAMP in the dorsal root
ganglion. These results provide strong evidence that BoNT is
transported from peripheral to central nerve terminals of
sensory neurons and attenuate downstream nociceptive
processing.

For direct central sensitization, the BoNT molecule needs
to go through transcytosis like tetanus toxin. Evidence is
building up that BoNT can undergo transcytotic movement
in neurons.66,72 The presence of cleaved SNAREs in dorsal root
ganglion, and the possibility of dural extravasation in menin-
geal afferent neurons after administration of BoNT in somatic
afferent neurons, strengthen the hypothesis of transcytosis.73

Excitatory versus Inhibitory Neurons
Botulinum neurotoxin molecule has been shown to inhibit the
release of serotonin, dopamine, noradrenaline, glutamate, gam-
ma aminobutyric acid (GABA), enkephalin, glycine, substance P,
ATP, and calcitonin gene-related peptide (CGRP), somatostatin,
and neuronal nitric oxide synthase,74,75 clearly indicating it can
affect both excitatory and inhibitory synapses.

Botulinum neurotoxin is more efficient in blocking the
neurotransmitter release from excitatory neurons compared
with inhibitory neurons.76 Although both types of neurons
efficiently internalize the BoNT molecule, the low level of
SNAP-25 at the inhibitory terminals,77,78 or negative regula-
tion by cleaved SNARE protein may be responsible for lower
efficiency for BoNT effect on inhibitory neurons.76,79,80 Gru-
melli et al81 and Verderio et al78 showed that reducing
calcium concentration increases the sensitivity of BoNT-A
toxin to inhibitory neurons. It is possible that SNAP-25 or
truncated SNAP-25 or both regulate calcium dynamics. The
SNAP-25 level is higher in excitatory neurons, and SNAP-25 is
a negative regulator of calcium channels,82 making BoNT-A
more sensitive to excitatory neurons. Alternatively, other
isoforms of SNAP-25 may be responsible for vesicle fusion
in inhibitory neurons.76

Effect on Sensory Neurons
Although BoNT is effective in blocking acetylcholine release at
the synapse, the intradermal injection of BoNT-A reduces
calcitonin gene-related peptide or CGRP,83 which plays a role
in nociception. Based on several in vitro experiments, the
induction of nociceptive action of BoNT might be due to the
blockage or the reduction of expression of neuropeptide
transmitters like substance P and CGRP from the primary
sensory neurons.84–86 Botulinum neurotoxin has been used
“off label” in several forms of chronic pain. It was observed
that BoNT-A reduces pain in some conditions resulting from
excessive muscle contraction, like in the painful dystonias,87

but also in pain states not associated with muscle hyper-
contraction, such as migraine,88 trigeminal neuralgia,89 neu-
ropathic pain,90 refractory joint pain,91 and low-back pain.92

There are two components that may play a role in BoNT
efficacy in pain modulation: impaired neurotransmitter re-
lease from the peripheral sensory nerve, and a neuromodu-
latory effect on receptors and ion channels. The fusion of

synaptic vesicles with the plasma membrane carries various
receptors, including receptors for pain, to the plasma mem-
brane. The peripheral administration of toxin disrupts the
transfer of receptors, such as TRPV1 and TRPA1, to
the synaptic membranes.93,94 Another possibility could be
the involvement of BoNT in another endogenous system, such
as the opioid system.95

In the case of migraine, which has both central and
peripheral sensitization, BoNT can be used as an effective
therapeutic tool. Apart from peripheral effects, reduction in
neurotransmitter release, the peripheral administration of
BoNT reduces c-FOS expression.96 Pain-induced c-Fos
activation in distinct brain areas is intimately linked with
nociceptive neurotransmission and the initiation and inte-
gration of central stress responses.97 In mechanociception,
BoNT-A inhibited C-fibers, not the Aδ nociceptor. In other
words, BoNT possibly interferes with the function of high-
threshold mechanosensitive ion channels.93

Interestingly, BoNT did not affect the normal pain thresh-
old, and is believed to affect only chronic or hypersensitive
pain, not acute pain.98 The lack of effect upon acute nocicep-
tion indicates and substantiates the arguments that BoNT’s
effect on nociception is more than a simple block of the
afferent terminal release. As in other medical treatments
involving BoNT, pain treatment also has tolerable and little
side effects. Nevertheless, botulinum treatments evoke anti-
gen response that hinders its long-term use as a medica-
tion.99,100 Apart from antigen response, BoNT administration
also significantly increases inflammatory cytokine levels.101

In summary, BoNT acts on sensory neurons in the follow-
ing ways: (1) reduces release of key neurotransmitters at the
nerve terminals, (2) indirectly affects upstream pathways,
and (3) has a direct effect on expression of ion channel
receptors on the neuronal membrane surface.

Alternative Mechanisms of BoNT Action
Until recently it was widely believed that the toxic and
therapeutic action of BoNT-A is because of SNAP-25 cleavage.
The BoNTmolecule stays active inside the cells for a long time
(weeks to months), and therefore it is possible that it directly
affects other cellular pathways or it can indirectly trigger/
affect pathways though physiological consequences of the
SNAP-25 cleavage. Ray et al. demonstrated that treatment of
PC-12 cells with BoNT-A reduced the Kþ-stimulated acetyl-
choline and arachidonic acid release.102 RhoB signaling path-
wayaffects actin reorganization and regulates various cellular
functions, including acetylcholine release induced by lyso-
phosphatidic acid.103 Botulinum neurotoxin A also prevented
neurotransmitter release evoked by phospholipids103

through degradation of RhoB.
Neurite sprouting at the neuromuscular junctions treated

with BoNT has been suggested to be related to SNAP-25
cleavage. However, Coffield and Yan104 demonstrated that
the sprouting phenomenon is dependent of toxin doses. At
lower doses, BoNT showed a dose-dependent increase in
sprouting. However, at higher doses BoNTsuppressed sprout-
ing,104 indicating that sprouting is dependent on SNAP-25
cleavage at lower doses, but at higher doses toxin is possibly
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acting on other pathways related to neuritogenesis. In cell
cultures, BoNT-A is shown to increase caspase 3/7, indicative
of antiproliferative activity in nonneuronal cells.105,106 In
contrast, Kumar et al demonstrated reduced caspase 3/7
activity in neuroblastoma cells.107 In another study with
human dermal fibroblasts, BoNT is hypothesized to stimulate
the extracellular matrix,108 and showed upregulation of
collagen synthesis and reduction in the production of
MMPs (matrix metalloproteinase). Notably, fibroblasts do
not express SNAP-25. BoNT-A is shown to effect gene expres-
sion in nonneuronal cells (lacking SNAP-25).32 Astrocytes do
not express SNAP-25 (although synaptobrevin II is present in
these cells), but glutamate release is affected by BoNT-A and
BoNT-C.109 HEK293 do not carry SNAP-25, but calcium cur-
rent in these cells is affected by BoNT.110 Thus, experimental
evidence suggests that evenwithout SNAP-25 cleavage, BoNT
is able to exert significant effects on cellular physiology. Even
in neuronal cells, BoNT-A treatment is shown to affect several
genes related to neurite outgrowth, Ca2þ sensitization, pro-
teosomal degradation pathways, and inflammatory
pathways.32

Longevity of BoNT Action

One of the major advantages of BoNT as a therapeutic agent is
its long-lasting effects on muscle relaxation (paralysis)
through its intracellular effects on presynaptic nerve endings.
For example, BoNT-A has consistently shown long-lasting
paralysis from3months to about a year comparedwith that of
BoNT-E, which lasts for about 4 weeks, both in animal studies
as well as in human therapeutics.111,112 Some studies have
indicated that longevity may arise from differential persis-
tence of the endopeptidase activities of respective sero-
types.113,114 However, another study indicated that the
lifetime of SNAP-25 cleaved by BoNT-A (SNAP-25A) and by
BoNT-E (SNAP-25E), or their further degraded/digested prod-
ucts due to host-cellular clearance mechanisms, correlated to
the duration of paralysis exhibited by BoNT-A and BoNT-E,
respectively.115 The localization of BoNT-A LC is near the
plasma membrane, whereas cytosolic localization of BoNT-E
has also been proposed to be a reason behind their different
half-lives.116 But co-localization of the toxins and SNAP-25
within the same cells has not been shown. Reduced suscepti-
bility to ubiquitin-dependent proteolysis, and/or the pres-
ence of di-leucine motif in the BoNT-A LC, underlies yet
another proposed mechanism contributing to neuroparalytic
longevity.117,118

Differences in longevity of the toxic action indicate the
possibility of the structural variability in the LC domain of
BoNT inside the neurons. One possible source of structural
variations may be through posttranslational modifications
that include phosphorylation, palmitoylation, and ubiquiti-
nation.119 The nonreceptor tyrosine kinases c-Src and PYK2
are abundant in neuronal and neuroendocrine cells, indicat-
ing phosphorylation of BoNT that might modulate LC activity
within the neurons.120 In a study with PC-12 cells and Tat-His
tagged BoNTA LC, it was shown that cleavage of cellular SNAP-
25 was reduced when the c-Src kinase activity was inhibited

with specific antagonists,121 implying the role of BoNT-A LC
phosphorylation in its intracellular endopeptidase activity.
Recent work by Toth et al122 showed phosphorylation of all
serotypes of BoNT LC, except BoNT-F LC, by c-Src-kinase under
in vitro conditions, and its effect on the stability of LCs against
autocatalytic cleavage. As BoNT LC exerts its catalytic action
on synaptosomal proteins and survives within the eukaryotic
neurons for an extended period,112,113 it is possible that it
gets phosphorylated in the neurons.122

In summary, the longevity of BoNTparalytic action, though
very important for its therapeutic use, is a phenomenon that
still needs molecular, cellular, and physiological explanation.

Concluding Remarks

Here we have briefly described the structural and functional
relevance of botulinum toxins in their biological function.
BoNT toxins emerged from nature as a sophisticated toxin
with high specificity, and structural and functional unique-
ness; they offer an excellent alternative to available thera-
peutics for many uncommon diseases. Considering the fact
that BoNT ismore active in excitatory neurons than inhibitory
neurons, it may be a useful therapeutic candidate in the
treatment of pathologies characterized by an imbalance of
these two signals, such as epilepsy. Although BoNT action is
very specific, it can influence several cellular processes due to
its intracellular longevity. The possibility of retrograde trans-
port and transcytosis of the BoNTmolecule open awhole new
possibility for BoNT as a therapeutic agent. Careful study of
the structural and functional aspects of botulinum toxin is
needed to unravel several cellular and functionalmechanisms
associated with BoNT action on motor and sensory neurons.
Knowledge acquired from these studies will provide us with
additional therapeutic tools, and the possibility of novel
fundamental scientific knowledge.
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